Natural spider silk has excellent mechanical properties. Researchers from the Graphene Flagship have increased the strength of spider’s silk using graphene-based materials. The spider silk incorporating graphene and carbon nanotubes had enhanced mechanical properties of up to three times the strength and ten times the toughness of the unmodified silks.
This paves the way for a novel class of high-performance bionic composites. The work is published in 2D Materials and was a collaboration between the University of Trento and the Cambridge Graphene Centre, within the Graphene Flagship’s Polymer Composites Work Package.Natural spider silk has excellent mechanical properties. Researchers from the Graphene Flagship have increased the strength of spider's silk using graphene-based materials. The spider silk incorporating graphene and carbon nanotubes had enhanced mechanical properties of up to three times the strength and ten times the toughness of the unmodified silks.#
The silk – produced naturally by the spiders, incorporating graphene and carbon nanotubes (rolled up graphene sheets) introduced in their environment – had enhanced mechanical properties of up to three times the strength and ten times the toughness of the unmodified silks.
“Humans have used silkworm silks widely for thousands of years, but recently research has focussed on spider silk, as it has promising mechanical properties. It is among the best spun polymer fibres in terms of tensile strength, ultimate strain, and especially toughness, even when compared to synthetic fibres such as Kevlar,” said Nicola Pugno from the University of Trento, Italy and Queen Mary University of London, UK.
Artificially modified biological materials are an expanding area of research. Natural materials can have properties that cannot be achieved with lab-produced materials, and taking inspiration from nature is an effective research tool. “We already know that there are biominerals present in the protein matrices and hard tissues of insects, which gives them high strength and hardness in their jaws, mandibles and teeth, for example. So our study looked at whether spider silk’s properties could be ‘enhanced’ by artificially incorporating various different nanomaterials into the silk’s biological protein structures,” said Pugno.
To enhance the spider’s silk, the researchers prepared solutions of graphene and carbon nanotubes (CNTs) which were sprayed within the enclosure the spiders were kept in. After allowing the spiders to ingest the graphene and CNT dispersions from their environment, silk was collected from the spiders and tested for graphene/CNT content and mechanical properties.
The silks showed enhanced mechanical properties compared to reference silks collected from the same spiders, with significant increases in the strength, toughness and elasticity of the biocomposite silk threads. The strongest silk threads had a fracture strength of up to 5.4 GPa, over three times as strong as the unmodified silks, as well as a tenfold increase of toughness modulus up to 2.1 GPa.
In graphene composites, the lateral size of the graphene flakes determines the interaction between the flake and the composite material – which influences the strain that can be transferred to the graphene below a threshold size. So, further boosts could be possible using graphene flakes specifically tailored for interaction with the silks.
This study opens up new potentials for tailoring the properties of biological materials to enhance their properties for use in novel applications. For example, these artificially modified silks could find use in high-performance or biodegradable textiles such as parachutes or medical dressings.
“This is the highest fibre toughness reported to date, and a strength comparable to that of the strongest carbon fibres or limpet teeth,” said Pugno. “These are still early days, but our results are a proof of concept that paves the way to exploiting the naturally efficient spider spinning process to produce reinforced bionic silk fibres, thus further improving one of the most promising strong materials.”
Costas Galiotis, leader of the Graphene Flagship work package on Polymer Composites said that this work is a good example of the Graphene Flagship’s activity in biologically-inspired composites. “While conventional composites, which are now used in so many applications still suffer from inherent weaknesses that prevent a more widespread use, natural or biologically-inspired composites, however, even those encountered in living species, are far superior in many respects because nature itself has worked out ingenious solutions for specific needs,” he said. “Indeed, graphene and related materials present an excellent opportunity to design new composites at the nanoscale and hence surpassing the deficiencies of conventional man-made materials.” (SV)
Fibre2Fashion News Desk – India