s and readily adoptable for hiigh-volume production. Compared to conventional metal components, they will contribute to a weight reduction of about 50%. Established technologies that embed metal inserts or endless fiber-reinforced thermoplastic mats and UD tape (unidirectional fiber reinforcement) in plastic complement the new approach. In addition, endless fiber-reinforced skin layers can be combined with lightweight foam cores to yield high-quality sandwich structures with exceptionally good specific part stiffness and good insulating characteristics in combination with low weight. The PU foam systems developed for such parts by BASF are characterized by high compressive strength and temperature resistance in conjunction with a low density. "Without such multimaterial systems, the next major advance in lightweight automotive applications will not be possible", states Volker Warzelhan, Head of Thermoplastics Research at BASF.
At the same time, BASF is expanding the capabilities of ULTRASIM™, its now universal computer simulation tool, the objective being the ability to predict the behavior of complex endless fiber-reinforced composites as well.