Scientists at the University of Minnesota have developed temperature-responsive textile that can be used to make self-fitting garments powered by body heat. The textiles resemble typical knits, but are created using special active materials, shape memory alloys (SMAs), which change shape when heated. These could also be used to create compression garments.
The research has been carried out by the University of Minnesota’s Design of Active Materials and Structures Lab (DAMSL) and Wearable Technology Lab (WTL). The study, led by graduate students Kevin Eschen and Rachael Granberry and professors Julianna Abel and Brad Holschuh, has been published in Advanced Materials Technologies.Scientists at the University of Minnesota have developed temperature-responsive textile that can be used to make self-fitting garments powered by body heat. The textiles resemble typical knits, but are created using special active materials, shape memory alloys (SMAs), which change shape when heated. These could also be used to create compression garments.#
"This is an important step forward in the creation of robotic textiles for on-body applications,” said Holschuh. “It’s particularly exciting because it solves two significant problems simultaneously: how to create usable actuation, or movement, without requiring significant power or heat, and how to conform a textile or garment to regions of the body that are irregularly shaped.”
The textiles resemble typical knits, except they are created using a special category of active materials — known as shape memory alloys (SMAs) — which change shape when heated.
In partnership with NASA, researchers studied the unique dimensions of a human leg. They then subsequently designed, manufactured and tested an SMA-based knitted garment that can precisely conform to a leg’s topography.
"This technology required advancements on multiple scales," said Abel. "At the material scale, we tuned it to respond to body temperature without added power. Structurally, we manufactured it to adapt to the complex shapes of the human body perfectly. At the system level, we created an operation that maps the mechanical performance of textiles to human anatomy. Each advancement is important, but, together, they create a functionality that didn't exist before."
These knits can be used in custom garments that can easily transform from loose to tight-fitting, and even bend in unique ways to conform to irregularly shaped regions of the body (e g, the back of the knee). Future use could be in creating compression garments that are initially loose fitting and easy to put on which could subsequently shrink to tightly squeeze the wearer.
“This creates an exciting new opportunity to create garments that can physically transform over time, which has significant implications for medical, aerospace and commercial applications," Holschuh said.
Next steps will be to integrate the textiles into full-sized garments, which could solve a variety of problems where fit and conformance to the body are important, such as medical-grade compression stockings.
The research was funded through a NASA Space Technology Research Fellowship and MnDRIVE.
Fibre2Fashion News Desk (SV)