“This process reduces not only the amount of energy and volume of gas required, but the amount of extraneous substances you have to put on the fiber,” Steiner says. “It’s actually pretty simple and cost-effective.”
Milo Shaffer, a professor of materials chemistry at Imperial College, London, says the group’s carbon-fiber techniques may be useful in designing composites for use in electrodes and air filters. A next step toward this goal, he says, is to make sure the fiber’s various layers and coatings stay in place.
“This result indicates an important factor to be incorporated in future ‘hairy carbon fiber’ developments,” says Shaffer, who did not contribute to the research. “The effect of the various coating combinations on [nanotube] attachment, and the eventual — and critical — fiber-matrix adhesion in composites, remains to be explored.”
The researchers have filed a patent for the two strategies, and envision advanced fiber composites incorporating their techniques for a whole range of applications.
“There are not a lot of people innovating materials chemistry for advanced aerospace structural applications,” Steiner says. “I think this is particularly exciting, and has a very real possibility to make a large-scale impact on the environment, and on the performance of aerospace vehicles.”
Massachusetts Institute of Technology