Eqalix buys licenses for trio of tissue-engineering technologies

June 08, 2012 - United States Of America

A trio of tissue engineering technologies developed by researchers and clinicians from Drexel University, the University of Pennsylvania and The Children’s Hospital of Philadelphia are moving one step closer to becoming viable options for vascular surgery, skin replacement and tissue regeneration. Eqalix, Inc., a start-up company from Reston, Va., has recently acquired the exclusive licenses for these three technologies and plans to develop them for commercial use.

“We are very excited to begin our next phase by developing and commercializing three platform candidates based upon these technologies for such diverse unmet medical needs,” Eqalix, Inc. CEO Joseph P. Connell said. “Our first target markets and objectives will be to concentrate on dermatology, cardiology and neurology. We hope to make considerable contributions to these fields and improve patient’s lives and treatment outcomes.”

One technology, related to synthetic vascular grafts, dubbed “LCL Grafts,” is a method for manufacturing fully synthetic vascular grafts. The use of these synthetic grafts would alleviate the need to locate and harvest donor arteries from elsewhere in the patient’s body or from another person.

“We’re excited that the nano-manufacturing techniques developed at Penn, Drexel and CHOP are making the leap from bench to bedside,” said Dr. Russell Composto, a researcher at the University of Pennsylvania who contributed to the development of LCL Grafts. “This advance will enable a new generation of small diameter blood vessels for clinical needs such as coronary bypass grafts.”

Dr. Robert Levy and his colleagues at The Children’s Hospital of Philadelphia developed the biopolymers used in the LCL Grafts. Levy’s group collaborated with Drexel researcher Dr. Peter Lelkes and Penn’s Composto in combining three distinct technologies for creating the unique hybrid microgrooved/electrospun vascular grafts, which led to the Eqalix license.

“This represents an important opportunity to explore the potential clinical benefit of these combined inventions for future use in both pediatric and adult patients,” Levy said.

Lelkes, who recently became Chair of Bioengineering and director of the Institute for Regenerative Medicine and Engineering at Temple University, and his collaborators at Drexel, developed the other two licensed technologies: “Alimentary Protein Scaffolds” focusing on dermal patches made of plant proteins and “3-Dimensional Scaffolds for Tissue Regeneration,” cell-free fibrous tissue equivalents generated from natural extracellular matrix proteins. Both these technologies could prove to be important new developments in skin replacement and tissue regeneration following traumatic injuries.

“The licensing of three of our inventions to Eqalix is an important milestone in our efforts to translate our basic research from the bench to the bedside and will, without a doubt, result in commercial products that will benefit patients around the globe,” Lelkes said.

The development of the LCL Grafts and Alimentary Protein Scaffolds was supported by funding from Drexel’s $20 million Coulter Translational Research Partnership endowment and federal grants. The partnership is dedicated to shepherding viable technologies from institutions of research to the marketplace.

"The Eqalix licenses clearly demonstrate that the Coulter program, by providing the right amount of funding and business knowhow at the right time, can make a huge impact on the commercialization prospects of university research outcomes,” said Dr. Banu Onaral, director of Drexel’s School of Biomedical Engineering, Science and Health Systems and the chair of the Coulter Translational Research Partnership program.

“The Coulter program will continue supporting Eqalix and the licensed technologies to ensure that these technologies will successfully find their way to market and thereby serve humanity,” Onaral said.

Eqalix, Inc. is a technology development company focused on developing and commercializing products in regenerative medicine for dermatology, cardiovascular applications, and neurology.
Founded in 1961, Drexel’s School of Biomedical Engineering, Science and Health Systems is one of the oldest in the country. Located in the heart of Philadelphia, which encompasses one of the highest concentrations of bio-medical industries and healthcare instiitutions, the School has formed an academic alliance with Thomas Jefferson University.

The Children’s Hospital of Philadelphia was founded in 1855 as the nation’s first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children’s Hospital has fostered many discoveries that have benefited children worldwide.